The essence of every industrial revolution is to increase productivity. Three previous industrial revolutions were triggered by technical innovations: utilization of water- and steam-powered mechanical manufacturing which took place at the end of the 18th century and allowed organizations to gain higher productivity, introduction of mass-production techniques by using electrical energy at the beginning of the 20th century and the shift from analogue to digital technology in the 1970s. Now, though, we are in the middle of the fourth wave of the technological advancements. The fourth industrial revolution is going to have more extensive impact triggered by Internet and allowing communication between humans and machines in Cyber-Physical-Systems (CPS) throughout large networks. Industry 4.0 will make it possible to collect and analyze different data across machines, allowing faster, more efficient and more flexible processes to manufacture goods of higher quality at reduced cost.

The term “Industry 4.0” describes the expected digitalization of industrial value chains with the idea of using emergent technologies to implement internet of things (IoT) and services in order different engineering and business processes being integrated allow production to operate in an efficient and flexible way with low costs and high quality.

The main aspects addressed by Industry 4.0 are the following:

  1. The IT-enabled mass customization of manufacturing products, meaning that production should be adapted to the needs of the individuals.
  2. Production chain’s adaptation in a flexible and automatic way to the requirements of the rapidly changing environment.
  3. Tracking and self-awareness of different parts and products and their mutual communication with other products and machines.
  4. Advanced human machine interaction paradigms, which includes new radical ways to interact and operate in the factories.
  5. Production optimization thanks to Internet of Things enabled communication in the Smart Factories.
  6. Appearance of completely new business models which will contribute to the radically new ways of interaction in the value chain.

Technological advancements on which Industry 4.0 relies, can be summarized into nine following concepts: autonomous robots, the cloud, industrial Internet of Things, big data, cybersecurity, simulation, additive manufacturing, horizontal and vertical system integration and the augmented reality.

Autonomous robots

Even though manufacturers have been using robots for complex assignments for a long time, robots and their capabilities are evolving dramatically. They become more flexible and autonomous and eventually will interact with one another and work side by side with humans.

The cloud

Within Industry 4.0 more organizations will start using cloud-based software allowing them to store and share data across organizational boundaries.

 

Industrial Internet of Things


The Internet of Things comprises of enriching different devices with embedded computing and connecting them using standard technologies. This allows different devices to communicate and interact both with one another and with more centralized controllers.


Big da
ta

In the environment dominated by Internet of things and Internet of services, new technologies will generate a huge amount of data. The internet of data will allow mass data transfer and storage as well as provide new and innovative analysis methods for mass data interpretation in the context of target application.


Cyber
security

CPS equipped with internet technology require reliable concepts and technologies to make sure that safety, privacy, security and knowledge protection are taking place. Therefore, reliable and secure communications together with sophisticated identity and access management of machines and users are crucial.


Si
mulation

Even though 3-D simulations are being used in the engineering phases nowadays, such simulations will also become widely used in plant operations in the future. They will use real-time data to mirror physical world in a virtual model, including products, machines and humans. As a consequence, the quality of products will increase dramatically.


Add
itive manufacturing

With the arrival of Industry 4.0 additive-manufacturing methods (e.g., 3-D printing) will become widely used to produce small batches of customized products offering different construction advantages, among those lightweight and complex designs. Such systems will also decrease stock on hand and transport distances.


Hor
izontal and vertical system integration

The horizontal integration means cross-organizational and organizational-internal intelligent cross-linking and digitalization along the value chain of the life-cycle of the product and among value chains of adjoining life-cycles of the products. Vertical integration is seen as the intelligent cross-linking and digitalization of different hierarchical levels of the value creation module.


Augm
ented reality

The organizations of the future will widely use augmented reality to provide employees with real-time information allowing better decision-making and improvement of work procedures.

In summary, Industry 4.0 tries to deal with personalized needs and global challenges in order to achieve competitive strength in the globalized markets. It has also a huge world-wide impact mostly concentrated in 4 areas: revenue growth, productivity, investment and employment. In general, Industry 4.0 is thought to have a great impact which is not limited to the industry itself but to the way the humanity works and rests.